Lecture of Tensor Products and Heisenberg Spin Chain

Multi-Qubit Systems:

If two independents are represented by the states|ys 1), W 2) EC 2, then the state of the system
made of these two qubits would be |llJl, 1|J2)=|L|J1)|1|J2)= |L|J1) X |L|J2)

The products state of the states NJl), |1]J2) € ¢’ is the pure tensor = |l]11) X® NJZ) it represents

the state of a system of two independent qubits in the states |l|J1) and |y 2)

From our prior definition of tensors, we know that pure tensors are only a generating set of
V @ W, but certain elements of IV @ W are not pure tensors.

When the state of a 2-qubit system is not in a product state, we call that system to be in an
entangled state. This definition will become clearer with the example below.

Example: We can start by looking the state

1 1 4
W=7 (10, 00) + I(L D) = —=([0)}0) + [1)1)eC

In this case, we can prove that [{s) is an entangled state. We will star by assuming that |{s) is in a
product state, We let a,a, bo’ b1 € Cs.t.

W)= W) ® [v)
W, )=a [0) +a|1)
[W,)=b,10) + b |1)

As aresult, we will yield the following,
W) ® [W)=a b [0)0)+a,b |1)|1)+a b [0)1)+a,b [1)[0)

This result will imply the below constraints:
— —L - =
a,b,=a b =— andab =a b =0

V2

The first condition contradicts the second condition. Hence, we can conclude that the state is not
a product state, but rather, the state is entangled.



Partial Measurements:

Definition: Given [{)= a|0,0) + b|0,1) + c|1,0) + d|1,1)eC° ® C°

Measure of the 1st qubit:

1 with probability a’ + b’ ——> with posterior state = %
a+
0 with probability ¢ +d ——> with posterior state = %
+
Measure of the 2nd qubit: C
1 with probability a’ + ¢’ ——> with posterior state = a|0,0):-6|1,0)
a +c
0 with probability b' +d° ——> with posterior state = blo’lli:d;'l)
+

Example : We will use the same example state as before in order to practice partial measurements.
=L =L 4
W)= =5 (1(0,0) + [, D)) = == (0)[0) + [D1))eC

If we measure the first qubit, we obtain 0 with probability 1/2, and the system is left in the state |0)|0).
Then, a measurement of the second qubit yields 0 with probability 1.

However, if we decided to measure the second qubit initially, we would get O with probability 1/2. As a
result, the measurement of the first qubit of the system has impacted the subsequent measurements of the
second qubit.



Spins:

In physics, spin is a fundamental quantum concept, and for our purposes, we'll pragmatically
consider it as a linear space representing the su(2) algebra. The discussion won't delve into the
detailed physical origin of spin but emphasizes its representation through the specified su(2)
algebra commutation relation.

[Sa, S B] =1 eaBYSy, a, B,y =1,2,3 where e*® is the Levi-Civita symbol. The fundamental
representation in which the spin operators are given by the Pauli matrices show below are the
simplest representation of this algebra:

X 2

_ 1 _ 1y 3
S—ZO' S—ZO'S

_1Z

There exists two useful operators in the fundamental representation:

0 1 - 0 0
ST = . S =
0 0 1 0

These operators act on the basis vectors as below:
- - 1
SHH =0, SN =11) S =51,
+ - i 1
ST =11, ST =0,  S[) 1)

)



Heisenberg Spin Chain:

A spin chain is essentially a series of spins arranged on a 1-dimensional lattice with L sites. Each
site contains a spin, and the interactions between these spins are determined by a specified
quantum Hamiltonian.

Hilbert Space:

The Hilbert space of a spin chain is constructed by taking the direct product of linear spaces
corresponding to individual spins. Denoted as V, it is expressed as the tensor product of V1 ® V2
® - - - ® VL, where Vk represents the linear space at site k. This Hilbert space, V, has a dimension
of 2L, and a convenient basis is formed by states such as |1)1 ©|1)2 @---®|1)L and [|)1 ©|1)2
®---0|| )L. The dimension corresponds to the 2 possible choices (spin-up or spin-down) at each
site, and common notation condenses the tensor product symbol for brevity.

Hamiltonian: we've previously discussed a chain of L spins, where the interactions are governed
by a Hamiltonian. Specifically, the Hamiltonian for the Heisenberg spin chain is now introduced.

H Z 9 n+l + ]I/SUSH+1 + /2 ;:S”+1) '

n=1

Special cases:
Firstly, Jx, Jy, Jz are three parameters which specify how strong the spins interact in each
direction. We have the following important special cases
1. Jx=Jy=0,Jz~0. This is the Ising Spin Chain.
2. Jz=0,Jx=JyF 0. This is the XX spin chain, which is equivalent to a free lattice
fermion by Jordan-Wigner transformation.
3. Jx=1Jy=1JzF 0. This is the isotropic case, which is called the XXX spin chain.
4. Jx=JyF~ JzF~ 0. This is the anisotropic case called XXZ spin chain.
5. JxEJyFJzF~ 0. This is the completely anisotropic case, which is called the XYZ spin
chain.

Interacting range: The interaction in the Heisenberg spin chain is characterized by nearest
neighbor interactions, where each spin SZ (0 =X, Yy, z) only interacts with its immediate neighbor

Sa on site n+1. This is referred to as nearest neighboring interaction, and the term "interacting
range" is defined as the number of sites involved in the Hamiltonian; commonly studied cases
have a range of k = 2. However, there's a growing interest in exploring integrable spin chains
with larger ranges (k > 2), known as medium or long-range interacting spin chains. It's important



to note that the spin operators, denoted as SZ’ act locally on the spins at site-n without affecting

other sites, earning them the label of local spin operators

The XXX Spin Chain:

For the XXX Spin chain, we will modify the Hamiltonian as below:

L
Hxxx = —J ) (SiSii +SUSh + 5:571)

L
J > Qz
= = Y (S St + Si S +25385,) o
n=l Sn=50n  A=3T,Y,2

Structure of Hilbert space to simplify calculations, the Hilbert space is divided into smaller
subspaces based on the number of spin-downs, considering spin-ups as the 'vacuum' and
spin-downs as 'excitations.' This perspective becomes clearer in the context of the Bethe ansatz.
For a spin chain of length L, the Hilbert space is decomposed into sectors with 0, 1, 2, and so on,
spin-downs. For instance, for L = 3, various sectors are formed based on the number of
spin-downs.

Vacuum: |1171)

One spin-down: [ [11), [ T11),[111)

Two spin-downs: | 1]1), [ 110, {11)
Three spin-down ||| ])



