
Lecture of Tensor Products and Heisenberg Spin Chain

Multi-Qubit Systems:
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the state of a system of two independent qubits in the states |ψ
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From our prior definition of tensors, we know that pure tensors are only a generating set of
, but certain elements of are not pure tensors.𝑉 ⊗ 𝑊 𝑉 ⊗ 𝑊

When the state of a 2-qubit system is not in a product state, we call that system to be in an
entangled state. This definition will become clearer with the example below.

Example:We can start by looking the state
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In this case, we can prove that is an entangled state. We will star by assuming that is in a|ψ⟩ |ψ⟩
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0
, 𝑎

1
, 𝑏

0
, 𝑏

1
∈ 𝐶

|ψ⟩= |ψ
1
⟩ ⊗ |ψ

2
⟩

=|ψ
1
⟩ 𝑎

0
|0⟩ + 𝑎

1
|1⟩

=|ψ
2
⟩ 𝑏

0
|0⟩ + 𝑏

1
|1⟩

As a result, we will yield the following,
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This result will imply the below constraints:
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The first condition contradicts the second condition. Hence, we can conclude that the state is not
a product state, but rather, the state is entangled.



Partial Measurements:

Definition: Given |ψ⟩= 𝑎|0, 0⟩ + 𝑏|0, 1⟩ + 𝑐|1, 0⟩ + 𝑑|1, 1⟩ ϵ 𝐶 2 ⊗ 𝐶 2

𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒  1𝑠𝑡 𝑞𝑢𝑏𝑖𝑡:

1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎2 + 𝑏2 −−>  𝑤𝑖𝑡ℎ 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 = 𝑎|0,0⟩+𝑏|0,1⟩

𝑎2+𝑏2
 

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐2 + 𝑑2 −−>  𝑤𝑖𝑡ℎ 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 = 𝑐|1,0⟩+𝑑|1,1⟩

𝑐2+𝑑2

𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒  2𝑛𝑑 𝑞𝑢𝑏𝑖𝑡:

1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎2 + 𝑐2 −−>  𝑤𝑖𝑡ℎ 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 = 𝑎|0,0⟩+𝑐|1,0⟩

𝑎2+𝑐2
 

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑏2 + 𝑑2 −−>  𝑤𝑖𝑡ℎ 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 = 𝑏|0,1⟩+𝑑|1,1⟩

𝑏2+𝑑2

Example :We will use the same example state as before in order to practice partial measurements.

|ψ⟩= 1
2

(|(0, 0)⟩ + |(1, 1)⟩) = 1
2

(|0⟩|0⟩ + |1⟩|1⟩)∈𝐶 4

If we measure the first qubit, we obtain 0 with probability 1/2, and the system is left in the state |0⟩|0⟩.
Then, a measurement of the second qubit yields 0 with probability 1.
However, if we decided to measure the second qubit initially, we would get 0 with probability 1/2. As a
result, the measurement of the first qubit of the system has impacted the subsequent measurements of the
second qubit.



Spins:

In physics, spin is a fundamental quantum concept, and for our purposes, we'll pragmatically
consider it as a linear space representing the su(2) algebra. The discussion won't delve into the
detailed physical origin of spin but emphasizes its representation through the specified su(2)
algebra commutation relation.

where is the Levi-Civita symbol. The fundamental𝑆α, 𝑆β[ ] = 𝐼ϵαβγ𝑆γ,    α, β, γ = 1, 2, 3 ϵαβγ

representation in which the spin operators are given by the Pauli matrices show below are the
simplest representation of this algebra:

𝑆1 = 1
2 σ𝑥 𝑆2 = 1

2 σ𝑦 𝑆3 = 1
2 σ𝑧

The two basis vectors are below; they are called “spin up” and “spin down”.

There exists two useful operators in the fundamental representation:

These operators act on the basis vectors as below:



Heisenberg Spin Chain:
A spin chain is essentially a series of spins arranged on a 1-dimensional lattice with L sites. Each
site contains a spin, and the interactions between these spins are determined by a specified
quantum Hamiltonian.

Hilbert Space:
The Hilbert space of a spin chain is constructed by taking the direct product of linear spaces
corresponding to individual spins. Denoted as V, it is expressed as the tensor product of V1 ⊗ V2
⊗ · · · ⊗ VL, where Vk represents the linear space at site k. This Hilbert space, V, has a dimension
of 2L, and a convenient basis is formed by states such as |↑⟩1 ⊗|↑⟩2 ⊗···⊗|↑⟩L and |↓⟩1 ⊗|↑⟩2
⊗···⊗|↓⟩L. The dimension corresponds to the 2 possible choices (spin-up or spin-down) at each
site, and common notation condenses the tensor product symbol for brevity.

Hamiltonian: we've previously discussed a chain of L spins, where the interactions are governed
by a Hamiltonian. Specifically, the Hamiltonian for the Heisenberg spin chain is now introduced.

Special cases:
Firstly, Jx, Jy, Jz are three parameters which specify how strong the spins interact in each
direction. We have the following important special cases

1. Jx =Jy =0,Jz ̸=0. This is the Ising Spin Chain.
2. Jz = 0, Jx = Jy ̸= 0. This is the XX spin chain, which is equivalent to a free lattice

fermion by Jordan-Wigner transformation.
3. Jx = Jy = Jz ̸= 0. This is the isotropic case, which is called the XXX spin chain.
4. Jx = Jy ̸= Jz ̸= 0. This is the anisotropic case called XXZ spin chain.
5. Jx ̸= Jy ̸= Jz ̸= 0. This is the completely anisotropic case, which is called the XYZ spin

chain.

Interacting range: The interaction in the Heisenberg spin chain is characterized by nearest

neighbor interactions, where each spin (α = x, y, z) only interacts with its immediate neighbor𝑆
𝑛
α

Sα on site n+1. This is referred to as nearest neighboring interaction, and the term "interacting
range" is defined as the number of sites involved in the Hamiltonian; commonly studied cases
have a range of k = 2. However, there's a growing interest in exploring integrable spin chains
with larger ranges (k > 2), known as medium or long-range interacting spin chains. It's important



to note that the spin operators, denoted as , act locally on the spins at site-n without affecting𝑆
𝑛
α

other sites, earning them the label of local spin operators

The XXX Spin Chain:

For the XXX Spin chain, we will modify the Hamiltonian as below:

and

Structure of Hilbert space to simplify calculations, the Hilbert space is divided into smaller
subspaces based on the number of spin-downs, considering spin-ups as the 'vacuum' and
spin-downs as 'excitations.' This perspective becomes clearer in the context of the Bethe ansatz.
For a spin chain of length L, the Hilbert space is decomposed into sectors with 0, 1, 2, and so on,
spin-downs. For instance, for L = 3, various sectors are formed based on the number of
spin-downs.

● Vacuum: |↑↑↑⟩
● One spin-down: | ↓↑↑⟩, | ↑↓↑⟩, | ↑↑↓⟩
● Two spin-downs: | ↑↓↓⟩, | ↑↓↓⟩,| ↓↑↓⟩
● Three spin-down |↓↓↓⟩


