## Lecture of Tensor Products and Heisenberg Spin Chain

## Multi-Qubit Systems:

If two independents are represented by the states $\left|\Psi_{1}\right\rangle,\left|\psi_{2}\right\rangle \in C^{2}$, then the state of the system made of these two qubits would be $\left|\Psi_{1}, \Psi_{2}\right\rangle=\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left|\Psi_{1}\right\rangle \otimes\left|\Psi_{2}\right\rangle$
The products state of the states $\left|\Psi_{1}\right\rangle,\left|\Psi_{2}\right\rangle \in C^{2}$ is the pure tensor $=\left|\Psi_{1}\right\rangle \otimes\left|\Psi_{2}\right\rangle$ it represents the state of a system of two independent qubits in the states $\left|\Psi_{1}\right\rangle$ and $\left|\Psi_{2}\right\rangle$

From our prior definition of tensors, we know that pure tensors are only a generating set of $V \otimes W$, but certain elements of $V \otimes W$ are not pure tensors.
When the state of a 2-qubit system is not in a product state, we call that system to be in an entangled state. This definition will become clearer with the example below.

Example: We can start by looking the state
$|\Psi\rangle=\frac{1}{\sqrt{2}}(|(0,0)\rangle+|(1,1)\rangle)=\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle) \in C^{4}$
In this case, we can prove that $|\psi\rangle$ is an entangled state. We will star by assuming that $|\psi\rangle$ is in a product state, We let $a_{0}, a_{1}, b_{0}, b_{1} \in C$ s.t.

$$
\begin{aligned}
& |\Psi\rangle=\left|\Psi_{1}\right\rangle \otimes\left|\Psi_{2}\right\rangle \\
& \left|\Psi_{1}\right\rangle=a_{0}|0\rangle+a_{1}|1\rangle \\
& \left|\Psi_{2}\right\rangle=b_{0}|0\rangle+b_{1}|1\rangle
\end{aligned}
$$

As a result, we will yield the following, $\left|\Psi_{1}\right\rangle \otimes\left|\Psi_{2}\right\rangle=a_{0} b_{0}|0\rangle|0\rangle+a_{1} b_{1}|1\rangle|1\rangle+a_{0} b_{1}|0\rangle|1\rangle+a_{1} b_{0}|1\rangle|0\rangle$

This result will imply the below constraints:

$$
a_{0} b_{0}=a_{1} b_{1}=\frac{1}{\sqrt{2}} \text { and } a_{0} b_{1}=a_{1} b_{0}=0
$$

The first condition contradicts the second condition. Hence, we can conclude that the state is not a product state, but rather, the state is entangled.

## Partial Measurements:

Definition: Given $|\psi\rangle=a|0,0\rangle+b|0,1\rangle+c|1,0\rangle+d|1,1\rangle \in C^{2} \otimes C^{2}$
Measure of the 1st qubit:
1 with probability $a^{2}+b^{2}-->$ with posterior state $=\frac{a|0,0\rangle+b|0,1\rangle}{\sqrt{a^{2}+b^{2}}}$
0 with probability $c^{2}+d^{2}-->$ with posterior state $=\frac{c|1,0\rangle+d|1,1\rangle}{\sqrt{c^{2}+d^{2}}}$
Measure of the $2 n d$ qubit:
1 with probability $a^{2}+c^{2}-->$ with posterior state $=\frac{a|0,0\rangle+c|1,0\rangle}{\sqrt{a^{2}+c^{2}}}$
0 with probability $b^{2}+d^{2}-->$ with posterior state $=\frac{b|0,1\rangle+d|1,1\rangle}{\sqrt{b^{2}+d^{2}}}$
Example : We will use the same example state as before in order to practice partial measurements.
$|\psi\rangle=\frac{1}{\sqrt{2}}(|(0,0)\rangle+|(1,1)\rangle)=\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle) \in C^{4}$
If we measure the first qubit, we obtain 0 with probability $1 / 2$, and the system is left in the state $|0\rangle|0\rangle$.
Then, a measurement of the second qubit yields 0 with probability 1 .
However, if we decided to measure the second qubit initially, we would get 0 with probability $1 / 2$. As a result, the measurement of the first qubit of the system has impacted the subsequent measurements of the second qubit.

## Spins:

In physics, spin is a fundamental quantum concept, and for our purposes, we'll pragmatically consider it as a linear space representing the su(2) algebra. The discussion won't delve into the detailed physical origin of spin but emphasizes its representation through the specified $\operatorname{su}(2)$ algebra commutation relation.
$\left[S^{\alpha}, S^{\beta}\right]=I \epsilon^{\alpha \beta \gamma} S^{\gamma}, \quad \alpha, \beta, \gamma=1,2,3$ where $\epsilon^{\alpha \beta \gamma}$ is the Levi-Civita symbol. The fundamental representation in which the spin operators are given by the Pauli matrices show below are the simplest representation of this algebra:

$$
\begin{aligned}
& S^{1}=\frac{1}{2} \sigma^{x} \quad S^{2}=\frac{1}{2} \sigma^{y} S^{3}=\frac{1}{2} \sigma^{z} \\
& \sigma^{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma^{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

The two basis vectors are below; they are called "spin up" and "spin down".

$$
|\uparrow\rangle \equiv\binom{1}{0}, \quad|\downarrow\rangle \equiv\binom{0}{1}
$$

There exists two useful operators in the fundamental representation:

$$
S^{+}=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), \quad S^{-}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)
$$

These operators act on the basis vectors as below:

$$
\begin{array}{ll}
S^{+}|\uparrow\rangle=0, & S^{-}|\uparrow\rangle=|\downarrow\rangle,
\end{array} \quad S^{z}|\uparrow\rangle=\frac{1}{2}|\uparrow\rangle, ~ 子 S^{-}|\downarrow\rangle=0, \quad S^{z}|\downarrow\rangle=-\frac{1}{2}|\downarrow\rangle .
$$

## Heisenberg Spin Chain:

A spin chain is essentially a series of spins arranged on a 1-dimensional lattice with $L$ sites. Each site contains a spin, and the interactions between these spins are determined by a specified quantum Hamiltonian.

## Hilbert Space:

The Hilbert space of a spin chain is constructed by taking the direct product of linear spaces corresponding to individual spins. Denoted as V, it is expressed as the tensor product of V1 $\otimes$ V2 $\otimes \cdots \otimes \mathrm{VL}$, where Vk represents the linear space at site k . This Hilbert space, V , has a dimension of 2 L , and a convenient basis is formed by states such as $|\uparrow\rangle 1 \otimes|\uparrow\rangle 2 \otimes \cdots \otimes|\uparrow\rangle \mathrm{L}$ and $|\downarrow\rangle 1 \otimes|\uparrow\rangle 2$ $\otimes \cdots \otimes|\downarrow\rangle \mathrm{L}$. The dimension corresponds to the 2 possible choices (spin-up or spin-down) at each site, and common notation condenses the tensor product symbol for brevity.

Hamiltonian: we've previously discussed a chain of L spins, where the interactions are governed by a Hamiltonian. Specifically, the Hamiltonian for the Heisenberg spin chain is now introduced.

$$
\hat{H}=\sum_{n=1}^{L}\left(J_{x} S_{n}^{x} S_{n+1}^{x}+J_{y} S_{n}^{y} S_{n+1}^{y}+J_{z} S_{n}^{z} S_{n+1}^{z}\right)
$$

## Special cases:

Firstly, $\mathrm{Jx}, \mathrm{Jy}, \mathrm{Jz}$ are three parameters which specify how strong the spins interact in each direction. We have the following important special cases

1. $J x=J y=0, J z \neq 0$. This is the Ising Spin Chain.
2. $\mathrm{Jz}=0, \mathrm{Jx}=\mathrm{Jy}=0$. This is the XX spin chain, which is equivalent to a free lattice fermion by Jordan-Wigner transformation.
3. $\mathrm{JX}=\mathrm{Jy}=\mathrm{J} \mathrm{z} \neq 0$. This is the isotropic case, which is called the XXX spin chain.
4. $\mathrm{Jx}=\mathrm{Jy} \vDash \mathrm{Jz} \vDash 0$. This is the anisotropic case called XXZ spin chain.
5. $\mathrm{J} \mathrm{X} \neq \mathrm{J} \mathrm{y} \vDash \mathrm{J} \mathrm{z} \neq 0$. This is the completely anisotropic case, which is called the XYZ spin chain.

Interacting range: The interaction in the Heisenberg spin chain is characterized by nearest neighbor interactions, where each spin $S_{n}^{\alpha}(\alpha=\mathrm{x}, \mathrm{y}, \mathrm{z})$ only interacts with its immediate neighbor S $\alpha$ on site $\mathrm{n}+1$. This is referred to as nearest neighboring interaction, and the term "interacting range" is defined as the number of sites involved in the Hamiltonian; commonly studied cases have a range of $\mathrm{k}=2$. However, there's a growing interest in exploring integrable spin chains with larger ranges $(\mathrm{k}>2)$, known as medium or long-range interacting spin chains. It's important
to note that the spin operators, denoted as $S_{n}^{\alpha}$, act locally on the spins at site-n without affecting other sites, earning them the label of local spin operators

## The XXX Spin Chain:

For the XXX Spin chain, we will modify the Hamiltonian as below:

$$
\begin{array}{ll}
H_{\mathrm{XXX}}=-J \sum^{L}\left(S_{n}^{x} S_{n+1}^{x}+S_{n}^{y} S_{n+1}^{y}+S_{n}^{z} S_{n+1}^{z}\right) & \\
=-\frac{J}{2} \sum_{n=1}^{L}\left(S_{n}^{-} S_{n+1}^{+}+S_{n}^{+} S_{n+1}^{-}+2 S_{n}^{z} S_{n+1}^{z}\right) & \text { and } \\
& S_{n}^{a}=\frac{1}{2} \sigma_{n}^{a}, \quad a=x, y, z
\end{array}
$$

Structure of Hilbert space to simplify calculations, the Hilbert space is divided into smaller subspaces based on the number of spin-downs, considering spin-ups as the 'vacuum' and spin-downs as 'excitations.' This perspective becomes clearer in the context of the Bethe ansatz. For a spin chain of length $L$, the Hilbert space is decomposed into sectors with $0,1,2$, and so on, spin-downs. For instance, for $L=3$, various sectors are formed based on the number of spin-downs.

- Vacuum: $|\uparrow \uparrow \uparrow\rangle$
- One spin-down: $|\downarrow \uparrow \uparrow\rangle,|\uparrow \downarrow \uparrow\rangle,|\uparrow \uparrow \downarrow\rangle$
- Two spin-downs: $|\uparrow \downarrow \downarrow\rangle,|\uparrow \downarrow \downarrow\rangle,|\downarrow \uparrow \downarrow\rangle$
- Three spin-down $|\downarrow \downarrow \downarrow\rangle$

